Глава V. ПОСЛЕДНИЕ УСИЛИЯ ЛОГИСТИКОВ

I

Логистики пытались ответить на все приведенные выше соображения. Для такого ответа им надобно было преобразовать логистику (1), и Рассел в особенности видоизменил в некоторых отношениях первоначальные ее точки зрения. Не входя в детали дела, я хочу остановиться только на двух вопросах, на мой взгляд, наиболее важных.

Дали ли правила логистики действительно доказательства своей плодотворности и непогрешимости? Верно ли, что они имеют возможность доказать принцип полной индукции, совершенно не обращаясь к интуиции?

II

Непогрешимость логистики

Что касается плодотворности, то Кутюра, по-видимому, строит наивные иллюзии. Логистика, по его мнению, дает изобретательности в ее распоряжение «леса и крылья». А на следующей, странице он говорит: «десять лет тому назад Пеано опубликовал первое издание своего «Formulaire» (2).

Как, уже десять лет, как вы имеете крылья, и вы еще не полетели!

Я питаю величайшее уважение к Пеано, который сделал превосходные работы (например, его кривая, которая заполняет целую площадь), но в конце концов он не ушел ни дальше, ни выше, ни быстрее, чем большая часть бескрылых математиков, и этот путь он мог бы ведь проделать так же хорошо на своих ногах.

Я, напротив, вижу в логистике только помеху для изобретателя; с ее помощью мы отнюдь не выигрываем в сжатости; если нужны 27 уравнений, для того чтобы установить, что 1 есть число, то сколько нужно будет уравнений, чтобы доказать настоящую теорему? Если мы различаем вместе с Уайтхедом индивид х, класс, единственный член коего есть х и который называется ix, затем — класс, единственный член которого есть класс с единственным членом x и который называется iix, то можно ли думать, что эти различия, как бы ни были они полезны, облегчат нам движение вперед?

Логистика заставляет нас сказать все то, что обыкновенно подразумевается; она заставляет нас двигаться шаг за шагом; это, быть может, делает движение более верным, но не более быстрым.

Вы даете нам не крылья, а детские помочи. Но тогда мы имеем право требовать, чтобы эти помочи не давали нам падать В такой помощи — единственное их оправдание. Если ценное имущество не приносит крупных доходов, то нужно по крайней мере, чтобы оно было в надежных руках.

Нужно ли следовать вашим правилам слепо? Конечно, да, иначе нам могла бы помочь разобраться в них одна только интуиция. Но в таком случае необходимо, чтобы эти правила были непогрешимы; слепое доверие можно питать только к непогрешимому авторитету. Для вас это необходимость. Вы должны быть непогрешимы, или вас не будет.

Вы не вправе сказать нам: «мы ошибаемся — это правда, но вы также ошибаетесь». Но наша ошибка для нас — несчастье, большое несчастье, для вас — это смерть.

Еще менее вправе вы сказать: «Разве непогрешимость арифметики препятствует ошибкам сложения? Правила счета непогрешимы, и все же мы видим, как ошибаются те, которые их применяют». Однако, просматривая их переделки, легко заметить, в какой момент они уклонились от правил. Здесь же совсем не то; логистики применили свои правила и впали в противоречие. Это настолько верно, что они готовы изменить правила и «пожертвовать понятием класса». Зачем же изменять правила, если они были непогрешимы?

«Мы не обязаны, — говорите вы, — разрешать hic et nunc (3) все возможные проблемы». О, мы от вас не требуем столь многого; если бы вы, разрешая проблему, не давали никакого решения, мы ничего не сказали бы; но вы, напротив, даете нам два решения, которые друг другу противоречат и из которых, следовательно, по крайней мере одно ложно. А это банкротство.

Рассел старается примирить эти противоречия и признает, что для такого примирения необходимо «ограничить понятие класса или даже пожертвовать им». Кутюра же, учитывая успех этой попытки, прибавляет: «если логистики достигнут того, что не удавалось другим, Пуанкаре не откажется вспомнить эту фразу и воздать должное решению логистики».

Но это не так: логистика существует, она имеет свое уложение, вышедшее уже в четырех изданиях; или, правильнее, это уложение и есть сама логистика. Готов ли Рассел показать, что по крайней мере одно из двух противоречивых суждений вышло за пределы уложения? Отнюдь нет; он готов изменить эти законы, а некоторые из них и уничтожить. Если он успешно выполнит свою попытку, то я воздам должное интуиции Рассела, но не логистике Пеано, которую он таким образом разрушит.

III

Отсутствие противоречия

Я привел выше два главных возражения против того определения целого числа, которое принято в логистике. Какой ответ дает Кутюра на первое возражение?

Что обозначает в математике слово существовать? Оно обозначает, сказал я, отсутствие противоречия. Кутюра возражает против этого. Он говорит: «Логическое существование есть нечто отличное от отсутствия противоречия. Оно заключается в том факте, что некоторый класс не пуст; сказать: «элементы а существуют» — значит, согласно определению, утверждать, что класс не есть нулевой». И, само собой разумеется, утверждать, что класс а не есть нулевой, значит, согласно определению, утверждать, что элементы а существуют. Но одно из этих утверждений так же лишено смысла, как и другое, если только они оба не обозначают либо то, что можно это а видеть или осязать, либо то, что можно постигнуть а, не впадая в противоречие. Но в первом случае мы имеем дело с утверждением, которое принимают физики и натуралисты; во втором случае — с утверждением, которое выставляют логики и математики.

Для Кутюра не отсутствие противоречия доказывает бытие, а бытие доказывает отсутствие противоречия. Чтобы установить существование класса, нужно установить при помощи примера, что есть какой-нибудь индивид, принадлежащий к этому классу. «Но, — скажут, — как доказать существование такого индивида? Не надобно ли, чтобы это существование было установлено для того, чтобы мы из него могли вывести существование класса, к которому принадлежит индивид? Совсем нет. Как ни покажется парадоксальным такое утверждение, нужно сказать, что никогда не доказывают существования индивида. Индивиды уже по одному тому, что они индивиды, всегда рассматриваются как существующие. Абсолютно говоря, нет нужды высказывать, что индивид существует, а нужно лишь сказать, что он существует в классе». Кутюра находит свое собственное утверждение парадоксальным, и, конечно, не он один найдет его таковым. Это утверждение, однако, должно иметь свой смысл. Кутюра, без сомнения, хочет сказать, что существование индивида, который является единственным в мире и о котором ничего не утверждается, не может повлечь противоречия; пока он остается единственным, он, очевидно, никого не стесняет. Пусть так; допустим, «абсолютно говоря», существование индивида; но с этим существованием нам нечего делать; нам нужно будет доказать существование индивида «в классе», а для этого надобно будет доказать, что утверждение «такой-то индивид принадлежит к такому-то классу» не стоит в противоречии ни с самим собой, ни с другими принятыми постулатами.

«Утверждать, что определение лишь тогда имеет действительное значение, когда раньше доказано, что оно непротиворечиво, это значит, — продолжает Кутюра, — предъявлять произвольное и неправильное требование». Капитуляция в вопросе об отсутствии противоречия выражена здесь в словах как нельзя более энергичных и самонадеянных. «Во всяком случае onus probandi (4) падает на тех, кто полагает, что эти принципы противоречивы». Постулаты предполагаются совместимыми друг с другом до тех пор, пока не доказано противоположное, подобно тому, как обвиняемый по презумпции предполагается невиновным.

Излишне говорить, что я не подписываюсь под этой капитуляцией. Но, говорите вы, доказательство, которого вы от нас требуете, невозможно, вы не должны от нас требовать, чтобы мы «схватили Луну зубами» (5). Простите, оно невозможно для вас, но не для нас, допускающих принцип индукции в качестве априорного синтетического суждения. И оно так же необходимо вам, как и нам.

Чтобы доказать, что система постулатов не заключает противоречия, необходимо применить принцип полной индукции; этот способ суждения не только не «странный», но единственно правильный. Отнюдь нельзя считать «неправдоподобными» случаи его применения; и нетрудно найти соответствующие «примеры и прецеденты». Я цитировал в моей статье два таких примера, заимствованных из брошюры Гильберта. Но он не один применял такой способ; те же, которые его избегали, были неправы. Я упрекал Гильберта не в том, что он к нему прибегал (как настоящий математик, Гильберт не мог не увидеть, что здесь необходимо было доказательство и что данное им доказательство было единственно возможное), но в том, что, прибегая к нему, он не признавал в нем суждения по рекуррентному методу.

IV

Второе возражение

Я отметил вторую ошибку логистиков в статье Гильберта. Теперь Гильберт отлучен, и Кутюра более не считает его логистиком. Он меня спросит, нашел ли я ту же самую ошибку у логистиков-ортодоксов. Нет, я не встречал ее на тех страницах, которые прочитал; но я не знаю, не встречу ли я ее на трехстах страницах, которые написаны ортодоксами и которые у меня нет желания читать.

Но логистикам придется впасть в эту ошибку, как только они захотят сделать из математической науки какое-нибудь приложение. Эта наука не имеет единственной целью вечное созерцание своего собственного пупа; она приближается к природе, и раньше или позже она придет с ней в соприкосновение; в этот момент не обходимо будет отбросить чисто словесные определения, которыми нельзя будет более довольствоваться.

Вернемся к примеру Гильберта. Дело идет все о том же рекуррентном суждении и о том, заключает ли система постулатов противоречие. Кутюра скажет, без сомнения, что это его не касается; но это заинтересует, быть может, тех, кто не отказывается, как он, от доказательства отсутствия противоречия.

Мы хотим установить, как мы говорили выше, что не встретим противоречия после сколь угодно большого числа суждений, раз это число будет конечным. Для этого необходимо применить принцип индукции. Должны ли мы под конечным числом понимать здесь всякое число, к которому по определению применим принцип индукции? Очевидно, нет, так как в противном случае мы пришли бы к следствиям, которые нас чрезвычайно затруднили бы.

Для того чтобы мы имели право установить систему постулатов, мы должны быть уверены, что постулаты непротиворечивы. Это — истина, принятая большинством ученых, я бы сказал «всеми учеными» до того, как прочел последнюю статью Кутюра. Но что обозначает эта истина? Имеется ли в виду: необходимо, чтобы мы были уверены в том, что не встретим противоречия после конечного числа предложений, причем конечным по определению будет такое число, которое обладает всеми свойствами рекуррентного характера, так что, если одно из этих свойств отсутствует, если мы, например, натолкнемся на противоречие, то мы условимся говорить, что данное число не есть конечное?

Другими словами, хотим ли мы сказать: необходимо, чтобы мы были уверены в том, что мы не встретим противоречия при условии, что мы согласимся остановиться в тот момент, когда такое противоречие начнет обрисовываться? Достаточно сформулировать такое предложение, чтобы тут же его осудить.

Таким образом, рассуждение Гильберта не только предполагает принцип индукции, но оно предполагает, что этот принцип нам дан не как простое определение, а как априорное синтетическое суждение.

Резюмируем:
доказательство необходимо;
единственно возможное доказательство есть рекуррентное доказательство;
оно законно только тогда, когда допускают принцип индукции и когда его рассматривают не как определение, а как синтетическое суждение.

V

Канторовские антиномии

Я обращаюсь теперь к рассмотрению нового мемуара Рассела. Этот мемуар был написан с целью преодолеть трудности, поднятые теми канторовскими антиномиями нa которые я неоднократно намекал выше. Кантор думал, что можно построить науку бесконечного; другие пошли по пути, открытому Кантором, но скоро натолкнулись на странные противоречия. Возникшие антиномии уже многочисленны, но наиболее известны следующие:
1 Антиномия Бурали-Форти.
2 Антиномия Цермело—Кённга.
3 Антиномия Ришара.

Кантор доказал, что порядковые числа (речь идет о порядковых трансфинитных числах, т. е. о новом понятии введенном Кантором) могут быть размещены в один линейный ряд, т. е. доказал, что из двух неравных порядковых чисел одно число всегда меньше другого. Бурали-Форти доказывает противоположное. В самом деле, говорит он, если бы все порядковые числа можно было разместить в один ряд, то этот ряд определял бы порядковое число, которое было бы больше, чем все другие; но к нему можно было бы прибавить единицу, и тогда получилось бы порядковое число, которое было бы еще больше, а это приводит к противоречию. Мы вернемся позднее к антиномии Церкело - Кёнига, которая имеет несколько отличную природу.

Но вот антиномия Ришара (Revue Generale des Sciences, 30 juin, 1905). Рассмотрим все десятичные числа, которые можно определить при помощи конечного числа слов. Эти десятичные числа образуют совокупность E, и легко видеть, что это есть исчислимая совокупность, т, е. можно перенумеровать различные десятичные числа этой совокупности от 1 до бесконечности. Допустим, что это уже произведено, и определим число N следующим образом. Если n-я цифра n-го числа совокупности Е есть

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

то n-я цифра числа N будет соответственно

1, 2, 3, 4, 5, 6, 7, 8, 1, 1.

Как мы видим, N не равно n-му числу совокупности Е, а так как n есть произвольное число, то N не принадлежит совокупности E; между тем N должно ей принадлежать, так как мы определили N при помощи конечного числа слов.

Мы увидим ниже, что Ришар сам дал объяснение своего парадокса, обнаружив при этом большую проницательность, и что его объяснение может быть mutatis mutandis (6) распространено на другие аналогичные парадоксы. Рассел цитирует еще другую довольно любопытную антиномию.

К а к о в о то н а и м е н ь ш е е ц е л о е ч и с л о, к о т о р о е н е л ь з я о п р е д е л и т ь п р и п о м о щ и ф р а з ы, и м е ю щ е й м е н е е с т а ф р а н ц у з с к и х с л о в?

Такое число существует. И в самом деле, числа, которые могут быть определены такой фразой, имеются, очевидно, в конечном количестве, ибо слова французского языка имеются также в конечном количестве. Следовательно, между этими числами будет одно такое, которое меньше всех прочих.

Но, с другой стороны, это число не существует, так как определение его заключает противоречие. Действительно, это число определяется самой фразой, напечатанной выше в разрядку и состоящей менее, чем из ста слов, а по определению это число не может быть определено подобной фразой.

VI

Теория зигзагов и теория неклассов

Какую позицию занимает Рассел ввиду этих противоречий? Рассмотрев те, о которых мы только что говорили, указав еще на другие и придав им форму, которая заставляет вспомнить об Эпимениде, он без колебаний заключает:

«A prepositional function of one variable does not always deter mine a class». Пропозициональная функция (т. е. определение) одной переменной не всегда определяет класс. «Пропозициональная функция», или «норма», может быть «непредикативной». И это не значит, что такие непредикативные предложения определяют пустой класс, нулевой класс; это не значит, что нет такой величины х, которая удовлетворяла бы определению и могла бы быть одним из элементов класса. Элементы существуют, но они не могут соединяться для образования класса.

Но это только начало, нужно еще быть в состоянии узнать, является ли определение предикативным или нет. Разрешая эту проблему, Рассел колеблется между тремя теориями, которые он называет:
А. теория зигзага (the zigzag theory);
В. теория ограничения размера (the theory of limitation of size);
С. теория неклассов (the no classes theory).

Согласно теории зигзагов «определения (пропозициональные функции) определяют класс, когда они очень просты, и перестают определять таковой, когда они становятся сложными и неясными». Кто же решит вопрос: можно ли рассматривать данное опреде- ление как достаточно простое, для того чтобы оно было приемлемо? На этот вопрос нет ответа, если не считать таковым форменное признание в полном бессилии: «правила, которые позволили бы распознавать, являются ли эти определения предикативными, были бы чрезвычайно сложны и рекомендовать их не было бы целесообразным ни с какой точки зрения. Это недостаток, который можно было бы исправить только при большой изобретательности или при помощи таких отличий, которые еще не намечены. Но до настоящего момента я в поисках этих правил не мог найти другого руководящего принципа, кроме отсутствия противоречия».

Эта теория остается, таким образом, довольно темной. В этой ночи — единственный проблеск, и этот проблеск есть слово «зигзаг». То, что Рассел называет «zigzag-giness», является, без сомнения, тем особенным свойством, которым отличается аргумент Эпименида.

Согласно теории of limitation of size класс теряет право на существование, если он слишком обширен. Он может даже быть бесконечным, но не должен быть «чрезмерно» бесконечным.

Мы и здесь встречаемся все с тем же затруднением: в какой же именно момент класс начинает становиться слишком бесконечным? Само собой разумеется, это затруднение не разрешено, и Рассел переходит к третьей теории.

В no classes theory запрещено произносить слово «класс», Оно должно замещаться разнообразными перифразами. Какой это крупный переворот для логистиков, которые только и говорят о классах и о классах классов! Необходимо переделать всю логистику. Представляют ли себе эти авторы, какой вид примет страница логистики, если в ней будут уничтожены все предложения, в которых идет речь о классах? Кроме нескольких строк, переживших такую операцию, на белой странице ничего не останется.

Как бы то ни было, мы видим, каковы колебания Рассела, видим изменения, которым он подвергает принятые им же основные принципы. Необходимы были критерии, чтобы решить, является ли определение слишком сложным или слишком обширным, а эти критерии не могут быть оправданы иначе, как обращением к интуиции.

Рассел в конце концов склоняется к теории неклассов.

Как бы там ни было, логистика должна быть переделана, и неизвестно, что в ней может быть спасено. Бесполезно прибавлять, что на карту поставлены только канторизм и логистика. Истинные математические науки, т. е. те, которые чему-нибудь служат могут продолжать свое развитие согласно свойственным им принципам, не заботясь о тех бурях, которые бушуют вне их; они будут шаг за шагом делать свои завоевания, которые являются окончательными и от которых им никогда не будет нужды отказываться.

VII

Правильное решение

Какой же выбор должны мы сделать между этими различными теориями? Мне кажется, что решение заключается в письме Ришара, о котором я уже говорил и которое помещено в «Revue Generale des Sciences» от 30 июня 1905 г. Изложив антиномию, которую я назвал антиномией Ришара, последний дает ей и объяснение.

Вернемся к тому, что мы сказали об этой антиномии в разделе V. Пусть Е будет совокупностью всех чисел, которые можно определить при помощи конечного числа слов, не вводя при этом понятия о самой совокупности Е. В противном случае определение Е заключало бы ложный круг: нельзя определять Е при помощи самой же совокупности Е.

Далее мы определили число N, правда, при помощи конечного числа слов, но мы опирались на понятие о совокупности Е. Вот почему N и не составляет части Е.

В примере, избранном Ришаром, вывод представляется с полной очевидностью, и очевидность эта станет еще более ясной, если обратиться к самому тексту письма. Но это же объяснение годится, как в том легко убедиться, и для других антиномий.

Итак, те определения, которые должны быть рассматриваемы как непредикативные, заключают ложный круг. Предшествовавшие примеры достаточно показали, что я под этим разумею. Не это ли Рассел обозначает названием «zigzag-giness»?

Я ставлю вопрос, не разрешая его.

VIII

Доказательства принципа индукции

Рассмотрим теперь мнимые доказательства принципа индукции и в особенности доказательства Уайтхеда и Бурали-Форти. Поговорим сначала о доказательстве Уайтхеда и воспользуемся некоторыми новыми и удачными обозначениями, которые Рассел ввел в своем последнем мемуаре.

Назовем рекуррентным классом всякий класс чисел, который содержит 0 и который содержит n+l, если он содержит n.

Назовем индуктивным числом всякое число, которое составляет часть всех рекуррентных классов.

При каком условии это последнее определение, играющее существенную роль в доказательстве Уайтхеда, будет «предикативным» и, следовательно, приемлемым?

Согласно предшествующему изложению под всеми рекуррентными классами надо понимать все классы, в определение которых не входит понятие об индуктивном числе.

Без этого можно впасть в ложный круг, который и породил антиномии.

Но Уайтхед не принял этой предосторожности.

Его рассуждение ложно; именно оно и повело к антиномиям; оно было незаконным, когда давало ложные результаты, и остается незаконным, когда приводит случайно к правильному результату.

Определение, которое содержит заколдованный круг, ничего не определяет. Не к чему говорить: мы уверены, что, какой бы смысл ни был дан нашему определению, все же существует по крайней мере нуль, который принадлежит классу индуктивных чисел. Дело не в том, чтобы узнать, пуст ли этот класс, а в том, чтобы его строго отграничить. «Непредикативный» класс — это не пустой класс, а класс, в котором граница оказывается неопределенной.

Излишне прибавлять, что это частное возражение оставляет в силе те общие возражения, которые приложимы ко всем доказательствам.

IX

Бурали-Форти представил другое доказательство в своей статье «Конечные классы» {Atti di Torino, t. XXXII), но он вынужден допустить два постулата.

Первый утверждает, что существует по крайней мере один бесконечный класс. Второй гласит

ueK(K - iL). Й.u<v'u.

Первый постулат не более очевиден, чем принцип, подлежащий доказательству. Второй не только не очевиден, но и ложен, как это показал Уайтхед и как это, впрочем, заметил бы любой лицеист математического класса, если бы аксиома была выражена на понятном языке. Ибо эта аксиома означает: число комбинаций, которые можно образовать из нескольких предметов, менее числа этих предметов.

X

Аксиома Цермело

В известном доказательстве Цермело опирается на следующую аксиому:

В какой-либо совокупности (или даже в каждой из совокупностей некоторой совокупности совокупностей) мы можем всегда выбрать наудачу один элемент (даже тогда, когда эта совокупность совокупностей обнимает бесконечно много совокупностей). Тысячу раз применяли эту аксиому, не высказывая ее. Но лишь только она была высказана, как появились сомнения. Одни математики, как Борель, ее отвергают, другие восхищаются ею. Посмотрим, что об этом думает Рассел в своей последней статье.

Он не высказывается, но те размышления, которым он предается, очень знаменательны.

Однако сначала один наглядный пример. Допустим, что мы имеем столько пар сапог, сколько есть целых чисел, так что мы можем нумеровать пары от 1 до бесконечности. Сколько мы будем иметь сапог? Будет ли число сапог равно числу пар? Да, если в каждой паре правый сапог отличается от левого, ибо в таком случае достаточно будет обозначить номером 2n - 1 правый сапог n-й пары, а номером 2n — левый сапог n-й пары. Нет, если правый сапог подобен левому, так как в этом случае такая операция будет невозможна. Иначе придется допустить аксиому Цермело, потому что тогда можно в каждой паре выбрать наудачу сапог, который будет рассматриваться как правый.

XI

Заключение

Доказательство, действительно основанное на принципах аналитической логики, будет составляться из ряда предложений. Одни из них, которые служат посылками, будут тождествами или определениями; другие будут последовательно выведены из первых. Но, хотя связь между каждым предложением н последующим замечается непосредственно, трудно будет с первого взгляда увидеть, как мог совершиться переход от первого предложения к последнему, и явится соблазн рассматривать это последнее как новую истину. Но если последовательно заменить фигурирующие в нем различные выражения их определениями, если провести эту операцию насколько можно далеко, то в итоге останутся только тождества, так что все сведется к бесконечной тавтологии. Логика, следовательно, окажется бесплодной, если не будет оплодотворена интуицией.

Вот что я уже писал давно. Логистики исповедуют противоположную точку зрения и думают, что доказали ее, показав действительно новые истины. Но каким образом?

Почему, применяя к их рассуждениям описанный только что прием, т. е. заменяя определенные термины их определениями, мы не видим, чтобы они сливались в тождества, как это бывает с обыкновенными рассуждениями? Значит, этот прием к ним неприменим. А почему? Потому что их определения непредикативные и дают тот заколдованный круг, который я отметил выше; непредикативные определения не могут стать на место определяемого термина. В этих условиях логистика является уже не бесплодной, она родит антиномию.

Вера в существование актуальной бесконечности дала начало этим непредикативным определениям. Я объяснюсь. В этих определениях фигурирует слово «все», как это видно из приведенных выше примеров. Слово «все» имеет достаточно точный смысл, когда речь идет о бесконечном (7) числе предметов; для того чтобы оно имело также смысл, когда предметов имеется бесчисленное множество, необходимо, чтобы существовало актуально бесконечное. В противном случае на все эти предметы нельзя было бы смотреть как на данные до их определения; вместе с тем определение понятия N, если оно зависит от всех предметов А, может страдать пороком заколдованного круга, раз между предметами А имеются такие, которые нельзя определить без помощи самого понятия N.

Правила формальной логики выражают просто свойства всех возможных классификаций. Но для того, чтобы эти правила были приложимы, необходимо, чтобы классификации оставались неизменными, чтобы их не приходилось изменять на протяжении рассуждений. Если приходится распределять конечное число предметов, то легко сохранить эти классификации без изменения. Если же предметы имеются в неопределенном количестве, т. е. если имеется возможность постоянного и внезапного появления новых предметов, то может случиться, что такое появление обяжет к изменению классификации. Отсюда опасность антиномий.

Нет актуальной бесконечности. Канторианцы забыли это и впали в противоречие. Верно то, что теория Кантора оказала услуги, но это было тогда, когда она применялась к истинной проблеме, термины которой были отчетливо определены; тогда можно было подвигаться вперед без опасений.

И логистики, подобно канторианцам, забыли об этом и встретились с теми же затруднениями. Но нужно знать, попали ли они на этот путь случайно или по необходимости.

Для меня вопрос не представляет сомнений. Вера в актуально бесконечное является существенной в логике Рассела. Этим она отличается от логистики Гильберта. Гильберт становится на точку зрения объема именно для того, чтобы избежать канторовских антиномий; Рассел становится на точку зрения содержания. Для него, следовательно, род предшествует виду и summum genus (8) предшествует всему. Это не представляло бы неудобства, если бы summum genus был конечным; но если он бесконечен, то приходится бесконечное ставить перед конечным, т. е. рассматривать бесконечное как актуальное.

Но мы имеем не только бесконечные классы. Когда мы переходим от рода к виду, суживая понятие введением новых условий, то эти условия тоже появляются в бесконечном числе. Ибо они вообще выражают, что рассматриваемый предмет находится в том или ином отношении ко всем предметам бесконечного класса.

Однако все это уже устаревшая история. Рассел заметил опасность. Он ее обдумает. Он все изменит. Он готов, запомним это, не только ввести новые принципы, которые позволяют производить не разрешенные никогда операции, но готов запретить операции, которые считал некогда законными. Он не довольствуется поклонением тому, что сжигал; он готов сжечь то, чему поклонялся, что еще тяжелее. Он не прибавляет нового крыла к зданию, он подрывает его основание.

Старая логистика умерла, a zigzag-theory и no classes theory оспаривают друг у друга преемственность. Чтобы судить о новой логистике, мы подождем, когда она образуется.

(1) В начале XX века под логистикой понимали математическую логику. — Прим. ред.

(2) По-видимому, речь идет о первых томах «Математического формуляра» Дж. Пеано, пять томов которого издавались с 1895 но 1903 годы. — Прим. ред.

(3) Здесь и сейчас (лат.) (означает категорическое требование) — Прим. ред.

(4) Бремя доказательств (лат.). — Прим. ред.

(5) Галлицизм, обозначающий: сделать невозможное. — Прим. ред.

(6) После необходимых изменении (лат.) — Прим. ред.

(7) В оригинале опечатка, следует читать «конечном». — Прим. ред.

(8) Первый, главный род (лат.). — Прим. ред.

[ К следующей главе | К оглавлению | К предыдущей главе ]